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Abstract
Exact solutions of n-coupled harmonic oscillators related to the Sp(2n,R) Lie
algebra are derived using an algebraic method. It is found that the energy
spectrum of the system is determined by one-boson excitation energies built on
a vector coherent state of Sp(2n,R) ⊃ U(n).

PACS numbers: 0220Q, 0365F

Coupled harmonic oscillators are useful in describing many physical systems, such as
molecular vibrations [1, 2], generalized coherent states in optics [3, 4], and so on. It is well
known that the dynamical symmetry group for n-uncoupled harmonic oscillators is U(n).
A natural extension is to include 0 and ±2h̄ω shifts among different levels, which leads
to the symplectic group Sp(2n,R). The Sp(6, R) case was successfully used to manifest
nuclear collective motion [5], which incorporated core excitations of both quadrupole and
monopole type into the shell model foundation of the nuclear collective model and thus led to
the possibility of full microscopic calculation of nuclear collective phenomena [6].

The Sp(2n,R) algebra consists of n(2n + 1) generators Eij , T (+)
ij = T

(+)
j i , and T (−)

ij =
(T

(+)
j i )

†, with 1 � i, j � n, which satisfy the following commutation relations:

[T (±)
ij , T

(±)
lm ] = 0 [T (−)

ij , T
(+)
lm ] = δilEmj + δimElj + δjlEmi + δjmEli

[T (−)
ij , Elm] = δilT

(−)
jm + δjlT

(−)
im [Eij , Elm] = δjlEim − δimElj .

(1)

The generators {Eij } with 1 � i, j � n form the subalgebra U(n).
An algebraic approach in some cases is a powerful procedure for solving energy eigenvalue

problems. Some typical examples were shown in [7] and [8]. A lot of applications to the
structure of nuclei can be found in [9]. In the following, we will outline an algebraic procedure
for diagonalizing the Hamiltonian with a linear combination of all the generators of Sp(2n,R),
namely

Ĥ = c +
∑
ij

dijEij +

(∑
ij

BijT
(+)
ij + h.c.

)
(2)
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where c, dij = d∗
ji , and Bij are parameters of the system, and the generators of Sp(2n,R) are

realized by n-boson operators with

Eij = a+
i aj

T
(+)
ij = a+

i a
+
j T

(−)
ij = (T

(+)
j i )

† = ajai
(3)

for 1 � i, j � n. In (3), a+
j and aj (j = 1, 2, . . . , n) are boson creation and annihilation

operators. A special form of (2) with

c = h̄

2

n∑
i=1

ωi djj = h̄ωj for j = 1, 2, . . . , n

dij = dji = h̄

2
λxij
(√
mimjωiωj

)−1
+
h̄

2
λ
p

ij

√
mimjωiωj

Bij = B∗
ij = h̄

4
λxij
(√
mimjωiωj

)−1 − h̄

4
λ
p

ij

√
mimjωiωj

Bjj = 0 for j = 0, 1, . . . , n

(4)

describes n-harmonic oscillators with both momentum and coordinate couplings, of which the
Hamiltonian can also be written as

Ĥ =
n∑
i=1

(
1

2mi

p2
i +

1

2
miω

2
i x

2
i

)
+
∑
i 
=j

(λ
p

ijpipj + λxij xixj ). (5)

In this case, the boson operators used in (3) should be expressed as

a+
j = 1√

2

(√
mjωj

h̄
xj + i

1√
mjωjh̄

pj

)
aj = (a+

j )
† (6)

which was used to describe molecular vibrations in [1, 2]. Since the Lie algebra
Sp(2n,R) is non-compact, any non-trivial unitary irreducible representation of Sp(2n,R)
is infinite-dimensional. The n-boson sub-Hilbert space spans two infinite-dimensional unitary
representations of Sp(2n,R), in which one forms from states with all even number of bosons,
and another from those with all odd number of bosons.

In order to diagonalize the Hamiltonian (2), one can first make a unitary transformation
with

a+
i =

n∑
µ=1

α(i)µ b
+
µ

ai = (a+
i )

† for i = 1, 2, . . . , n

(7)

where {b+
µ} is another set of boson creation operators. In (7) the parameters α(i)µ should satisfy∑

µ

α(i)∗µ α(j)µ = δij

∑
ij

dijα
(i)
µ α

(j)∗
ν = 0 for µ 
= ν.

(8)

After transformation (7), the Hamiltonian (2) can be expressed as

Ĥ = c +
∑
µ

ρµEµµ(b) +

(∑
µν

AµνT
(+)
µν (b) + h.c.

)
(9)

where Eµµ(b) = b+
µbµ, T (+)

µν (b) = b+
µb

+
ν , and

ρµ =
∑
ij

dijα
(i)
µ α

(j)∗
µ

Aµν =
∑
ij

Bijα
(i)
µ α

(j)
ν .

(10)
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Since there are ±2h̄ω shifts among different harmonic oscillator levels, the ground state
of (9) should be expanded in terms of power series of the operators T (+)

µν acting on the boson
vacuum. Similar to the Bethe ansatz, it can be shown that the primitive eigenstate of (9) can
be written as a vector coherent state (VCS) of Sp(2n,R) ⊃ U(n) built on the lowest weight
state ofU(n), of which the general theory was given in [10–12], namely, up to a normalization
factor

|g〉 =  g|0〉 = e
∑

µν zµνT
(+)
µν (b)|0〉 (11)

where zµν = zνµ are c-numbers to be determined, and |0〉 is the b-boson vacuum state. Using
the Hausdorff–Campbell formula and the eigenequation

Ĥ |g〉 = Eg|g〉 (12)

one obtains an energy eigenvalue corresponding to the primitive state

Eg = c + 2
∑
µν

zµνA
∗
νµ (13)

where the parameters zµν should satisfy the following algebraic equations:

Aµν + (ρµ + ρν)zµν + 4
∑
ij

A∗
ij ziµzjν = 0 (14)

for 1 � µ, ν � n. The possible roots {zµν} of equation (14) should also keep the eigenvalue
Eg real. It is obvious that there may be several sets of roots {z(p)µν } (p = 1, 2, . . .), with which
the eigenvalue E(ν)

g is real under some parametrizations depending on dij and Bij . Therefore,
generally there will be several different solutions to the problem.

Then, one-particle excitation states built on |g〉 can easily be determined. First, write the
one-particle excitation state up to a normalization factor as

|k = 1〉 = F̂ |g〉 (15)

where

F̂ =
∑
µ

cµb
+
µ (16)

in which cµ (µ = 1, 2, . . . , n) are c-numbers to be determined. The eigenequation in this case
is

Ĥ F̂ |g〉 = [Ĥ , F̂ ]|g〉 + EgF̂ |g〉 = (E1 + Eg)F̂ |g〉 (17)

where

[Ĥ , F̂ ] =
∑
µ

ρµcµb
+
µ + 2

∑
µν

A∗
µνcµbν. (18)

Using commutation relations

[bi, T
(+)
µν ] = δiµb

+
ν + δiνb

+
µ (19)

it can be shown that

[Ĥ , F̂ ]|g〉 =
(∑

µ

ρµcµb
+
µ + 2

∑
µν

A∗
µνcµbν

)
 g|0〉

=
∑
µ

(
ρµcµ + 4

∑
ij

A∗
ij cj ziµ

)
b+
µ g|0〉. (20)

Combining equations (17) and (20), one finally obtains the following eigenequation for the
eigenvalues E1 and the corresponding c-numbers {cµ}:

(ρµ − E1)cµ + 4
∑
ij

A∗
ij ziµcj = 0 (21)
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for µ = 1, 2, . . . , n. It is clear that there are n eigenvalues of E1 determined by equation (21).
Generally, there may exist some negative or complex eigenvalues E1. However, complex and
negative eigenvalues are physically unacceptable. A complex eigenvalue contradicts the fact
that the Hamiltonian is Hermitian, while a negative eigenvalue will lead to an energy spectrum
that is not lower bound. Therefore, the physically acceptable solutions of (21) are those with all
n eigenvaluesE1(ν) (ν = 1, 2, . . . , n) positive. One cannot select a part of positive eigenvalues
from n eigenvalues {E1(ν)} as a solution to the problem because part of the eigenvector sets
corresponding to the positive eigenvalues selected are incomplete. However, it is difficult to
determine what conditions the coupling constants in (9) should satisfy in order to keep the
solution within the lower bound spectrum. It can be seen from equation (21) that a necessary
condition to keep the spectrum lower bound is∑

µ

ρµ + 4
∑
ij

A∗
ij zij > 0. (22)

But (22) is not sufficient. A trivial case is Aµν = 0 for {1 � µ, ν � n}, in which ρµ > 0 with
1 � µ � n must be satisfied. If all eigenvalues E1(ν) (ν = 1, 2, . . . , n) are positive, one can
prove that ‘k-particle’ excitation states up to a normalization factor can be written as

|k〉 =




[k/2]∑
µ=0

∑′

i1i2···i2µ
a
(2µ)
i1i2···i2µ F̂i1 F̂i2 · · · F̂i2µ |g〉 for k even

[k/2]∑
µ=0

∑′

i1i2···i2µ+1

a
(2µ+1)
i1i2···i2µ+1

F̂i1 F̂i2 · · · F̂i2µ+1 |g〉 for k odd

(23)

where [x] denotes the integer part of x, the prime indicates that none of the pairs of indices ip
and iq in the summation are the same with 1 � i1 < i2 < · · · < iν � k and with ν � k

F̂iq ≡
∑
µ

c
(iq )
µ b+

µ (24)

and the coefficients a(p)i1i2···ip should satisfy the following recurrence relation:

a
(p−2)
i1i2···ip−2

=
∑′

lm a
(p)

i1i2···ip−2lm
c(l,m)

E(k) − Eg −∑p−2
ν=1 Eiν

. (25)

Again the prime in (25) indicates that l 
= m 
= i1, i2, . . . , ik−2. We also have for the coefficients

c(m, l) = c(l,m) = [[Ĥ , F̂m], F̂l] =
∑
µν

A∗
µνc

(m)
µ c(l)ν . (26)

One may start from a
(k)
1 2···k = 1, and then use equation (25) to derive the other coefficients

a
(p)

i1i2···ip for p � k − 2.
It should be noted that the indices {i1, i2, . . . , iν} in (23) are just labels for defining the

expansion. For example, when k = 2 there are only two terms in the expansion with

|k = 2〉 = (a
(0)
0 + a(2)12 F̂1F̂2)|g〉. (27)

Though the labels i1, i2 in a(2)i1i2 are different, the operators F̂1 and F̂2 can then be taken as the
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same. When n = 3 for example, (27) gives six possible eigenstates:

|k = 2, 1〉 = (a(0)(1) + a(2)12 (1)F̂1F̂1)|g〉 with energy eigenvalue Eg + 2E1

|k = 2, 2〉 = (a(0)(2) + a(2)12 (2)F̂1F̂2)|g〉 with energy eigenvalue Eg + E1 + E2

|k = 2, 3〉 = (a(0)(3) + a(2)12 (3)F̂1F̂3)|g〉 with energy eigenvalue Eg + E1 + E3

|k = 2, 4〉 = (a(0)(4) + a(2)12 (4)F̂2F̂2)|g〉 with energy eigenvalue Eg + 2E2

|k = 2, 5〉 = (a(0)(5) + a(2)12 (5)F̂2F̂3)|g〉 with energy eigenvalue Eg + E2 + E3

|k = 2, 6〉 = (a(0)(6) + a(2)12 (6)F̂3F̂3)|g〉 with energy eigenvalue Eg + 2E3.

(28)

When k = 4, there will be eight terms in the expansion with

|k = 4〉 = (a
(0)
0 + a(2)12 F̂1F̂2 + a(2)13 F̂1F̂3 + a(2)14 F̂1F̂4

+a(2)23 F̂2F̂3 + a(2)24 F̂2F̂4 + a(2)34 F̂3F̂4 + a(4)1234F̂1F̂2F̂3F̂4)|g〉 (29)

where F̂ir and F̂iq with r 
= q in (29) can also be the same. Each case corresponds to a different

excitation state. It should be stated that the coefficients c
(iq )

j in equations (24) and (26) should
satisfy eigenequation (21). Therefore, the eigenenergies Ei for any i can only be taken as n
values. By denoting these n eigenvalues of (21) as {Eτi ≡ E1(τi )} (i = 1, 2, . . . , n) it can
easily be proven that the ‘k-particle’ excitation energy can be rewritten as

E(k) = Eg +
∑
i

kiEτi (30)

with
n∑
i=1

ki = k (31)

where [k1, k2, . . . , kn] is an integer partition of k. Hence, the energy spectrum is still harmonic.
If there are several sets of solutions of equation (14), any one set of these solutions

and the k-particle excitations built on (11) according to equation (21) form a complete set
{|k; zµν〉} with k = 0, 1, 2, . . . . These different sets of solutions cannot be the eigenstates of (9)
simultaneously, otherwise the eigenstates will be over-complete because 〈k; z′

µν |k; zµν〉 
= 0.
In fact, {|k; zµν〉} and {|k; z′

µν〉} are different sets of eigenstates spanning the same sub-
Hilbert space. In order to illustrate this conclusion, let us consider a concrete example
of Hamiltonian (2) for n = 2 with c = 0, d11 = 0.5, d22 = 1.0, d12 = d21 = 0.2,
B12 = B21 = 0.2, B11 = B22 = 0, which are given in arbitrary units of energy. After
transformation (8), we have ρ1 = 1.008, ρ2 = 0.492, A11 = −A22 = 0.193, 2A12 = −0.104.
Using Mathematica, one can show that there are four sets of real solutions as follows.

Case 1. z11 = 0.2472, z22 = −0.0998, 2z12 = 0.0768. The corresponding one-
particle excitation energies calculated from equation (19) are all positive with Eτ1 = 0.5673,
Eτ2 = 1.1846. In this case, the primitive state (11) is the ground state. The corresponding
ground state energy is 0.1177. Hence, the energy spectrum is lower bound.

Case 2. z11 = −0.0996, z22 = 0.9990, 2z12 = 0.0979. The corresponding one-particle
excitation energies calculated from (19) are Eτ1 = 0.9236, Eτ2 = −0.2924. The primitive
state energy is −0.4465.
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Case 3. z11 = −2.4502, z22 = 0.244 35, 2z12 = 0.240 27. The corresponding one-particle
excitation energies calculated from (19) are Eτ1 = −0.9236, Eτ2 = 0.2924. The primitive
state energy is −1.0888.

For both cases 2 and 3, the energy spectrum is neither lower bound nor upper bound and
consists of both positive and negative parts.

Case 4. z11 = −2.364, z22 = 0.9542, 2z12 = 0.7351. The corresponding one-particle exci-
tation energies are Eτ1 = −0.935, Eτ2 = −0.2924. The primitive state energy is −1.4321. In
this case, the energy spectrum is upper bound.

It is clear that these four cases are all the possible solutions. However, only a lower
bound spectrum is acceptable in physical applications because frequencies of the quasi-particle
excitations ωτi = Eτi /h̄ are positive. Therefore, only case 1 is the physical solutions to the
problem. The situation will be more complicated for general n cases, but the conclusion
for the n = 2 case still applies for general n, i.e., the physical ground state is the VCS of
Sp(2n,R) ⊃ U(N) built on the lowest weight state of U(n).

In summary, the eigenvalue problem of the Hamiltonian built from a linear combination of
all generators of Sp(2n,R), which corresponds to n-coupled harmonic oscillators, is exactly
solved using a simple algebraic procedure. It is found that, generally, there may be several
sets of solutions. However, only lower bound solutions are acceptable in physical problems,
in which the ground states of the Hamiltonian are the VCS of Sp(2n,R) ⊃ U(n) built on the
lowest weight state of U(n). The results show that the spectrum is determined by one-boson
excitation energies built on the primitive state given by (11), and thus still remains harmonic.

Acknowledgments

One of us (FP) is grateful to Professor J R Klauder for helpful discussions on the subject.
This paper was supported by the US National Science Foundation through a regular grant,
no 9970769, and a Cooperative Agreement, no EPS-9720652, that includes matching from
the Louisiana Board of Regents Support Fund, and by the Science Foundation of the Liaoning
Education Commission no 990311011.

References

[1] Wilson E B, Decius J C and Cross P C 1955 Molecular Vibration (New York: McGraw-Hill)
[2] Mills I M and Robiette A G 1985 Mol. Phys. 56 743
[3] Mandel L and Wolf E 1995 Optical Coherence and Quantum Optics (Cambridge: Cambridge University Press)
[4] Klauder J R and Skagerstam B S 1995 Coherent States (Singapore: World Scientific)
[5] Rowe D J 1985 Rep. Prog. Phys. 48 1419
[6] Draayer J P, Weeks K J and Rosensteel G 1984 Nucl. Phys. A 413 215
[7] Mehra J 1972 The golden age of theoretical physics: PAM Dirac’s scientific work from 1924–1933 Aspect of

Quantum Theory ed A Salam and E P Wigner (Cambridge: Cambridge University Press)
[8] Goshen S and Lipkin H J 1959 Ann. Phys., NY 6 301
[9] Van Isacker P 1999 Rep. Prog. Phys. 62 1661

[10] Rowe D J, Le Blanc R and Hecht K T 1988 J. Math. Phys. 29 287
[11] Castanos O, Chacon E and Moshinsky M 1984 J. Math. Phys. 25 1211
[12] Hecht K T 1987 Lecture Notes in Physics vol 290 (Berlin: Springer)


